Инструкция
1
Если известны длины обоих оснований (b и c) и одинаковых по определению боковых сторон (a) равнобедренной трапеции, то для вычисления величины одного из ее острых углов (γ) можно использовать свойства прямоугольного треугольника. Для этого опустите высоту из любого прилегающего к короткому основанию угла. Прямоугольный треугольник будет образован высотой (катет), боковой стороной (гипотенуза) и отрезком длинного основания между высотой и ближней боковой стороной (второй катет). Длину этого отрезка можно найти, отняв от длины большего основания длину меньшего и поделив результат пополам: (c-b)/2.
2
Получив значения длин двух смежных сторон прямоугольного треугольника, переходите к вычислению угла между ними. Отношение длины гипотенузы (a) к длине катета ((c-b)/2) дает значение косинуса этого угла (cos(γ)), а функция арккосинус поможет преобразовать его в величину угла в градусах: γ=arccos(2*a/(c-b)). Так вы получите величину одного из острых углов трапеции, а поскольку она равнобедренна, то и второй острый угол будет иметь такую же величину. Сумма всех углов четырехугольника должна составлять 360°, а это значит, что сумма двух тупых углов будет равна разности между этим числом и удвоенной величиной острого угла. Поскольку оба тупых угла тоже будут одинаковы, то для нахождения величины каждого из них (α) эту разность надо поделить пополам: α = (360°-2*γ)/2 = 180°-arccos(2*a/(c-b)). Теперь у вас есть формулы вычисления всех углов равнобедренной трапеции по известным длинам ее сторон.
3
Если длины боковых сторон фигуры неизвестны, но дана ее высота (h), то действовать нужно по такой же схеме. В этом случае в прямоугольном треугольнике, составленном из высоты, боковой стороны и короткого отрезка длинного основания, вам будут известны длины двух катетов. Их соотношение определяет тангенс нужного вам угла, а эта тригонометрическая функция тоже имеет своего антипода, преобразующего значение тангенса в величину угла - арктангенс. Полученные в предыдущем шаге формулы острого и тупого углов трансформируйте соответствующим образом: γ=arctg(2*h/(c-b)) и α = 180°-arctg(2*h/(c-b)).