Вам понадобится
- учебник по геометрии.
Инструкция
1
Стоит напомнить, что треугольник является прямоугольным, если один и его углов равен 90 градусов. А медиана - это отрезок опущенный из угла треугольника на противолежащую сторону. Причем он делит ее на две равные части. В прямоугольном треугольнике ABC, у которого угол АВС является прямым, медиана BD, опушенная из вершины прямого угла, равняется половине гипотенузы AC. То есть, для того, чтобы найти медиану, поделите значение гипотенузы на два: BD=AC/2.Пример: Пусть в прямоугольном треугольнике АВС (АВС-прямой угол), известны значения катетов AB=3 см., BC=4 см., найдите длину медианы ВD, опущенной из вершины прямого угла. Решение:
1) Найдите значение гипотенузы. По теореме Пифагора AC^2 = AB^2+BC^2. Следовательно AC = (AB^2+BC^2)^0,5 = (3^2+4^2)^0,5 = 25^0,5 = 5 см
2) Найдите длину медианы по формуле: BD = AC/2. Тогда BD = 5 см.
1) Найдите значение гипотенузы. По теореме Пифагора AC^2 = AB^2+BC^2. Следовательно AC = (AB^2+BC^2)^0,5 = (3^2+4^2)^0,5 = 25^0,5 = 5 см
2) Найдите длину медианы по формуле: BD = AC/2. Тогда BD = 5 см.
2
Совершенно другая ситуация возникает при нахождение медианы, опущенной на катеты прямоугольного треугольника. Пусть у треугольника АВС, угол В прямой, а АЕ и СF медианы опущенные на соответствующие катеты ВС и АВ. Тут длинна этих отрезков находится по формулам: АЕ=(2(АВ^2+AC^2)-BC^2)^0,5/2
СF=(2(BC^2+AC^2)-AB^2)^0,5/2 Пример: У треугольника АВС, угол АВС является прямым. Длина катета АВ = 8 см, угол BCA = 30 градусов. Найдите длины медиан, опущенных из острых углов.Решение:
1) Найдите длину гипотенузы АС, ее можно получить из соотношения sin(BCA)=AB/AC. Отсюда AC=AB/sin(BCA). AC=8/sin(30)=8/0,5=16 см.
2) Найдите длину катета АС. Проще всего ее можно найти по теореме Пифагора: AC = (AB^2+BC^2)^0,5, AC = (8^2+16^2)^0,5 = (64+256)^0,5 = (1024)^0,5 = 32 см.
3) Найдите медианы по выше приведенным формулам
АЕ=(2(АВ^2+AC^2)-BC^2)^0,5/2 = (2(8^2+32^2)-16^2)^0,5/2 = (2(64+1024)-256)^0,5/2 = 21,91 см.
СF=(2(BC^2+AC^2)-AB^2)^0,5/2 = (2(16^2+32^2)-8^2)^0,5/2 = (2(256+1024)-64)^0,5/2 = 24,97 см.
СF=(2(BC^2+AC^2)-AB^2)^0,5/2 Пример: У треугольника АВС, угол АВС является прямым. Длина катета АВ = 8 см, угол BCA = 30 градусов. Найдите длины медиан, опущенных из острых углов.Решение:
1) Найдите длину гипотенузы АС, ее можно получить из соотношения sin(BCA)=AB/AC. Отсюда AC=AB/sin(BCA). AC=8/sin(30)=8/0,5=16 см.
2) Найдите длину катета АС. Проще всего ее можно найти по теореме Пифагора: AC = (AB^2+BC^2)^0,5, AC = (8^2+16^2)^0,5 = (64+256)^0,5 = (1024)^0,5 = 32 см.
3) Найдите медианы по выше приведенным формулам
АЕ=(2(АВ^2+AC^2)-BC^2)^0,5/2 = (2(8^2+32^2)-16^2)^0,5/2 = (2(64+1024)-256)^0,5/2 = 21,91 см.
СF=(2(BC^2+AC^2)-AB^2)^0,5/2 = (2(16^2+32^2)-8^2)^0,5/2 = (2(256+1024)-64)^0,5/2 = 24,97 см.
Обратите внимание
Медиана всегда разбивает треугольник на два других треугольника, равных по площади.
Точка пересечения всех трех медиан называется центром тяжести.
Точка пересечения всех трех медиан называется центром тяжести.
Полезный совет
Очень часто значение катетов и гипотенуз проще всего найти по тригонометрическим формулам.
Источники:
- что такое медиана прямоугольника