Инструкция
1
В общем виде систему линейных алгебраических уравнений можно решить методом подстановки, но для СЛАУ большой размерности такое вычисление весьма трудоемко. И чаще в этом случае используют связанные матрицы, в том числе и расширенную.
2
Запишите заданную систему линейных уравнений. Проведите ее преобразование, упорядочив множители в уравнениях таким образом, чтобы одинаковые неизвестные переменные располагались в системе строго друг под другом. Свободные коэффициенты без неизвестных перенесите в другую часть уравнений. При перестановке слагаемых и переносе учитывайте их знак.
Как найти расширенную <strong>матрицу</strong>
3
Определите матрицу системы. Для этого отдельно выпишите коэффициенты, стоящие при искомых переменных СЛАУ. Выписывать нужно в том порядке, как они расположены в системе, т.е. из первого уравнения первый коэффициент поставьте на пересечении первой строки и первого столбца матрицы. Порядок строк новой матрицы соответствует порядку уравнений системы. Если одна из неизвестных системы в данном уравнении отсутствует, значит, ее коэффициент здесь равен нулю – внесите ноль в матрицу на соответствующую позицию строки. Получаемая матрица системы должна быть квадратной (m=n).
Как найти расширенную <strong>матрицу</strong>
4
Найдите расширенную матрицу системы. Свободные коэффициенты в уравнениях системы за знаком равенства выпишите в отдельный столбец, сохраняя тот же порядок строк. В квадратной матрице системы справа от всех коэффициентов поставьте вертикальную черту. За чертой допишите полученный столбец свободных членов. Это и будет расширенная матрица исходной СЛАУ размерностью (m, n+1), где m – число строк, n – число столбцов.
Как найти расширенную <strong>матрицу</strong>