Инструкция
1
Если заданная функция имеет асимптоты, то они могут быть вертикальными или наклонными. Существуют также горизонтальные асимптоты, являющиеся частным случаем наклонных.
2
Предположим, что вам дана функция f(x). Если она не определена в некоторой точке x0 и по мере приближения x к x0 слева или справа f(x) стремится к бесконечности, то в этой точке функция имеет вертикальную асимптоту. Например, в точке x = 0 лишаются смысла функции 1/x и ln(x). Если x → 0, то 1/x → ∞, а ln(x) → -∞. Следовательно, обе функции в этой точке имеют вертикальную асимптоту.
3
Наклонная асимптота — прямая, к которой неограниченно стремится график функции f(x) по мере того, как x неограниченно возрастает или убывает. Функция может иметь и вертикальные, и наклонные асимптоты.

В практических целях различают наклонные асимптоты при x → ∞ и при x → -∞. В ряде случаев функция может стремиться к одной и той же асимптоте в обе стороны, но, вообще говоря, они не обязаны совпадать.
4
Асимптота, как и всякая наклонная прямая, имеет уравнение вида y = kx + b, где k и b — константы.

Прямая будет наклонной асимптотой функции при x → ∞, если по мере стремления x к бесконечности разность f(x) - (kx+b) стремится к нулю. Аналогично, если эта разность стремится к нулю при x → -∞, то прямая kx + b будет наклонной асимптотой функции в этом направлении.
5
Чтобы понять, имеет ли заданная функция наклонную асимптоту, и если имеет — найти ее уравнение, нужно вычислить константы k и b. Метод вычисления не меняется от того, в каком направлении вы ищете асимптоту.

Константа k, также называемая угловым коэффициентом наклонной асимптоты, является пределом отношения f(x)/x при x → ∞.

Например, путь задана функция f(x) = 1/x + x. Отношение f(x)/x будет в этом случае равно 1 + 1/(x^2). Его предел при x → ∞ равен 1. Следовательно, заданная функция имеет наклонную асимптоту с угловым коэффициентом 1.

Если коэффициент k получается нулевым, это значит, что наклонная асимптота заданной функции горизонтальна, и ее уравнение y = b.
6
Чтобы найти константу b, то есть смещение нужной нам прямой, понадобится вычислить предел разности f(x) - kx. В нашем случае эта разность равна (1/x + x) - x = 1/x. При x → ∞ предел 1/x равен нулю. Таким образом, b = 0.
7
Окончательный вывод состоит в том, что функция 1/x + x имеет наклонную асимптоту в направлении плюс бесконечности, уравнение которой y = x. Тем же способом легко доказать, что эта же прямая является наклонной асимптотой заданной функции и в направлении минус бесконечности.