Вам понадобится
- лист бумаги, карандаш, линейка, калькулятор
Инструкция
1
Начертите на листе бумаги произвольный треугольник при помощи линейки и карандаша. Внимательно рассмотрев треугольник, вы сможете убедиться, что у него действительно нет объема, так как он нарисован на плоскости. Подпишите стороны треугольника: пусть одна сторона будет стороной "а", другая - стороной "b", и третья - стороной "c". Подпишите вершины треугольника буквами "А", "B" и "C".
2
Измерьте линейкой любую сторону треугольника и запишите получившийся результат. После этого восстановите перпендикуляр к измеренной стороне из противоположной ей вершины, такой перпендикуляр будет являться высотой треугольника. В случае, представленном на рисунке, перпендикуляр "h" восстановлен к стороне "c" из вершины "A". Измерьте получившуюся высоту линейкой и запишите результат измерения.
3
Подсчитайте площадь треугольника, используя следующую формулу: длину стороны "c" умножьте на высоту "h" и разделите получившееся значение на 2.
4
Может случиться, что вам будет сложно восстановить точный перпендикуляр. В этом случае вам следует воспользоваться другой формулой. Измерьте все стороны треугольника линейкой. После этого подсчитайте полупериметр треугольника "p", сложив получившиеся длины сторон и разделив их сумму пополам. Имея в своем распоряжении значение полупериметра, вы можете рассчитать площадь треугольника по формуле Герона. Для этого необходимо извлечь квадратный корень из следующего выражения: p(p-a)(p-b)(p-c).
5
Вы получили искомую величину площади треугольника. Задача нахождения объема треугольника не решена, но как говорилось выше, объема у треугольника не существует. Вы можете найти объем пирамиды, которая по сути является треугольником в трехмерном мире. Если представить, что наш первоначальный треугольник стал трехмерной пирамидой, то объем такой пирамиды будет равен произведению длины ее основания на полученную нами площадь треугольника.
Обратите внимание
Подсчеты будут тем точнее, чем тщательнее вы будете производить измерения
Источники:
- Калькулятор “Все во все” - портал по справочным величинам
- объем треугольника