Инструкция
1
В фигуре, составленной из абсолютно одинаковых граней, основанием можно считать любое из них, поэтому задача сводится к вычислению длины произвольно выбранного ребра. Если вам известна полная площадь поверхности тетраэдра (S), для вычисления длины ребра (a) извлеките из нее квадратный корень и разделите полученный результат на кубический корень из тройки: a = √S/³√3.
2
Площадь одной грани (s), очевидно, должна быть вчетверо меньше полной площади поверхности. Поэтому для расчета длины грани по этому параметру трансформируйте формулу из предыдущего шага к такому виду: a = 2*√s/³√3.
3
Если в условиях дана только высота (H) тетраэдра, для нахождения длины стороны (а), составляющей каждую грань, утройте это единственное известное значение, а затем разделите на квадратный корень из шестерки: a = 3*H/√6.
4
При известном из условий задачи объеме (V) тетраэдра для вычисления длины ребра (a) придется извлекать кубический корень из этой величины, увеличенной в двенадцать раз. Рассчитав эту величину, разделите ее еще и на корень четвертой степени из двойки: a = ³√(12*V)/⁴√2.
5
Зная диаметр описанной около тетраэдра сферы (D) тоже можно найти длину ее ребра (a). Чтобы это сделать, увеличьте диаметр вдвое, а затем разделите на квадратный корень из шестерки: a = 2*D/√6.
6
По диаметру вписанной в эту фигуру сферы (d) длина ребра определяется почти так же, разница лишь в том, что диаметр надо увеличивать не вдвое, а в целых шесть раз: a = 6*d/√6.
7
Радиус окружности (r), вписанной в любую грань этой фигуры, тоже позволяет вычислить нужную величину - умножьте его на шестерку и разделите на квадратный корень из тройки: a = r*6/√3.
8
Если в условиях задачи дана суммарная длина всех ребер правильного тетраэдра (P), для нахождения длины каждого из них просто разделите это число на шесть - именно столько ребер имеет эта объемная фигура: a = P/6.