Вам понадобится
  • - линейка
  • - карандаш
  • - циркуль
Инструкция
1
Для выполнения задания постройте пирамиду в соответствии с условием задачи. Например, для построения правильного тетраэдра необходимо начертить фигуру так, чтобы все 6 рёбер были равны между собой. Если требуется построить высоту четырёхугольной пирамиды, то равными должны быть лишь 4 ребра основания. Тогда рёбра боковых граней можете строить неравными с рёбрами многоугольника. Назовите пирамиду, обозначив все вершины буквами латинского алфавита. Например, для пирамиды с треугольником в основании можно выбрать буквы A, B, C (для основания), S (для вершины). Если в условии заданы конкретные размеры рёбер, то при построении фигуры исходите из данных величин.
2
Для начала условно подберите при помощи циркуля окружность, касающуюся изнутри всех рёбер многоугольника. Если пирамида правильная, то точка (назовите её, например, Н) на основании пирамиды, в которую опускается высота, должна соответствовать центру окружности вписанной в правильный многоугольник основания пирамиды. Центру будет соответствовать точка, равноудалённая от любой другой точки на окружности. Если соединить вершину пирамиды S с центром окружности H, то отрезок SH и будет высотой пирамиды. При этом помните, что окружность можно вписать в четырёхугольник, суммы противоположных сторон которого одинаковы. Это касается квадрата и ромба. При этом точка H будет лежать на пересечении диагоналей четырёхугольника. Для любого треугольника есть возможность вписать и описать окружность.
3
Чтобы построить высоту пирамиды, воспользуйтесь циркулем для рисования окружности, а затем при помощи линейки соедините её центр H с вершиной S. SH – искомая высота. Если в основании пирамиды SABC неправильная фигура, то высота будет соединять вершину пирамиды с центром окружности, в которую вписан многоугольник основания. Все вершины многоугольника лежат на такой окружности. При этом данный отрезок будет перпендикуляром к плоскости основания пирамиды. Описать окружность вокруг четырёхугольника можно, если сумма противоположных углов равна 180о. Тогда центр такой окружности будет лежать на пересечении диагоналей соответствующих фигур – квадрата и прямоугольника.