Вам понадобится
- -линейка и карандаш;
- -калькулятор.
Инструкция
1
Решить систему уравнений - означает найти множество всех ее решений, или доказать, что она их не имеет. Её принято записывать с помощью фигурной скобки.
2
Для решения системы уравнений с двумя переменными обычно используют следующие методы: графический способ, способ подстановки и способ сложения. Остановимся подробнее на первом из вышеперечисленных вариантов.
3
Рассмотрим последовательность решения системы, которая состоит из линейных уравнений имеющих вид: a1x + b1y = c1 и a2x + b2y = c2. Где x и y – неизвестные переменные, а b,c – свободные члены. При применении данного способа каждое решение системы представляет собой координаты точек прямых, соответствующих каждому уравнению. Для начала в каждом случае выразите одну переменную через другую. Затем задайте переменной х несколько любых значений. Достаточно два. Подставьте в уравнение и найдите y. Постройте систему координат, отметьте на ней полученные точки и проведите через них прямую. Аналогичные расчеты необходимо провести и для других частей системы.
4
Точка или точки пересечения построенных графиков и будут являться решением данной совокупности уравнений.
5
Система имеет единственное решение, если построенные прямые пересекаются и имеют одну общую точку. Она несовместна, если графики параллельны друг другу. И имеет бесконечно много решений, когда прямые сливаются друг с другом.
6
Данный способ считается очень наглядным. Главным недостатком является то, что вычисленные неизвестные имеют приближенные значения. Более точный результат дают так называемые алгебраические методы.
7
Любое решение системы уравнений стоит проверить. Для этого подставьте вместо переменных полученные значения. Так же можно найти его решение несколькими методами. Если решение системы верное, то все ответы должны получиться одинаковыми.