Прежде чем мы рассмотрим различные способы нахождения катета в прямоугольном треугольнике, примем некоторые обозначения. Катетом называют прилежащую к прямому углу сторону прямоугольного треугольника. Длины катетов условно обозначим a и b. Углы, противолежащие катетам a и b обозначим соответственно через A и B. Гипотенуза, по определению, это сторона прямоугольного треугольника, которая противоположна прямому углу (при этом с другими сторонами треугольника гипотенуза образует острые углы). Длину гипотенузы обозначим через с.
Углы, противолежащие катетам a и b обозначим соответственно через A и B. Гипотенуза, по определению, это сторона прямоугольного треугольника, которая противоположна прямому углу (при этом с другими сторонами треугольника гипотенуза образует острые углы). Длину гипотенузы обозначим через с.
Вам понадобится: Калькулятор.
Проверьте, какому из перечисленных случаев соответствует условие вашей задачи и в зависимости от этого руководствуйтесь соответствующим пунктом. Выясните, какие величины в рассматриваемом треугольнике вам известны.
Воспользуйтесь для вычисления катета следующим выражением: a=sqrt(c^2-b^2), в том случае, если вам известны величины гипотенузы и другого катета. Это выражение получается из теоремы Пифагора, которая гласит, что квадрат гипотенузы треугольника равен сумме квадратов катетов. Оператор sqrt обозначает извлечение квадратного корня. Знак "^2" означает возведение во вторую степень.
Используйте формулу a=c*sinA, если вам известна гипотенуза (c) и угол, противолежащий искомому катету (этот угол мы обозначили, как A). Выражение a=c*cosB используйте для нахождения катета, если вам известна гипотенуза (c) и угол, прилежащий искомому катету (этот угол мы обозначили как B). Вычислите катет по формуле a=b*tgA в случае, когда задан катет b и угол, противолежащий искомому катету (этот угол мы условились обозначать A).
Обратите внимание: Если же в вашей задаче катет не находится ни одним из описанных способов, скорее всего, её можно свести к какому-то из них.
Полезные советы: Все эти выражения получаются из общеизвестных определений тригонометрических функций, поэтому, даже если вы забыли какое-то из них, вы всегда сможете путём несложных операций его быстро вывести. Также, полезно знать значения тригонометрических функций для наиболее типичных углов 30, 45, 60, 90, 180 градусов.
Видео по теме
Источники:
«Пособие по математике для поступающих в вузы», под ред. Г.Н. Яковлева, 1982