Инструкция
1
Метод подстановки или последовательного исключения.Подстановку используют в системе с небольшим количеством неизвестных. Это простейший метод решения для несложных систем. Сначала из первого уравнения выражаем одно неизвестное через другие, подставляем это выражение во второе уравнение. Выражаем из преображенного второго уравнения второе неизвестное, подставляем полученное в третье уравнение и т.д. до тех пор, пока не вычислим последнее неизвестное. Затем подставляем его значение в предыдущее уравнение и узнаем предпоследнее неизвестное и т.д. Рассмотрим пример системы с двумя неизвестными.x + y - 3 = 0
2x - y - 3 = 0
Выразим из первого уравнения x: x = 3 - y. Подставим во второе уравнение: 2(3 - y) - y - 3 = 0
6 - 2y - y - 3 = 0
3 - 3y = 0
y = 1
Подставляем в первое уравнение системы (или в выражение для x, что одно и то же): x + 1 - 3 = 0. Получим, что x = 2.
2x - y - 3 = 0
Выразим из первого уравнения x: x = 3 - y. Подставим во второе уравнение: 2(3 - y) - y - 3 = 0
6 - 2y - y - 3 = 0
3 - 3y = 0
y = 1
Подставляем в первое уравнение системы (или в выражение для x, что одно и то же): x + 1 - 3 = 0. Получим, что x = 2.
2
Метод почленного вычитания (или сложения).Этот метод часто позволяет сократить время решения системы и упростить вычисления. Состоит он в том, чтобы проанализировав коэффициенты при неизвестных таким образом сложить (или вычесть) уравнения системы, чтобы исключить часть неизвестных из уравнения. Рассмотрим пример, возьмем ту же систему, что и в первом методе.
x + y - 3 = 0
2x - y - 3 = 0
Легко видеть, что при y стоят одинаковые по модулю коэффициенты, но с разным знаком, поэтому если мы сложим два уравнения почленно, то yдастся исключить y. Выполним сложение: x + 2x + y - y - 3 - 3 = 0 или 3x - 6 = 0. Таким образом, x = 2. Подставив это значение в любое уравнение, найдем y.
Можно, наоборот, исключить x. Коэффициенты при x одинаковы по знаку, поэтому будем вычитать одно уравнение из другого. Но в первом уравнении коэффициент при x - 1, а во втором - 2, поэтому просто вычитанием не удастся исключить x. Умножим первое уравнение на 2, получим такую систему:
2x + 2y - 6 = 0
2x - y - 3 = 0
Теперь почленно вычтем из первого уравнения второе: 2x - 2x + 2y - (-y) - 6 - (-3) = 0 или, приведя подобные, 3y - 3 = 0. Таким образом y = 1. Подставив в любое уравнение, найдем x.
x + y - 3 = 0
2x - y - 3 = 0
Легко видеть, что при y стоят одинаковые по модулю коэффициенты, но с разным знаком, поэтому если мы сложим два уравнения почленно, то yдастся исключить y. Выполним сложение: x + 2x + y - y - 3 - 3 = 0 или 3x - 6 = 0. Таким образом, x = 2. Подставив это значение в любое уравнение, найдем y.
Можно, наоборот, исключить x. Коэффициенты при x одинаковы по знаку, поэтому будем вычитать одно уравнение из другого. Но в первом уравнении коэффициент при x - 1, а во втором - 2, поэтому просто вычитанием не удастся исключить x. Умножим первое уравнение на 2, получим такую систему:
2x + 2y - 6 = 0
2x - y - 3 = 0
Теперь почленно вычтем из первого уравнения второе: 2x - 2x + 2y - (-y) - 6 - (-3) = 0 или, приведя подобные, 3y - 3 = 0. Таким образом y = 1. Подставив в любое уравнение, найдем x.
Видео по теме