Инструкция
1
Задачу по построению линии пересечения для 2-х плоскостей можно назвать базовой в теории технического черчения. Чтобы образовать линию пересечения для 2-х треугольников, нужно определить точки, принадлежащие обеим плоским фигурам.
2
Для решения задачи постройте два треугольника ABC и EDK во фронтальной и горизонтальной проекции. Затем проведите через сторону AB в треугольнике ABC вспомогательную плоскость Pн, ее горизонтальную проекцию. Данная горизонтальная плоскость образует линию пересечения 1-2 с плоскостью второго треугольника EDK, где точки 1 и 2 находятся на сторонах ED и EK.
3
Таким же образом найдите линию пересечения 1′-2′ горизонтально проецирующей плоскости Pн, проведенной через сторону A′B′ во фронтальной проекции треугольника ABC. Фронтальные проекции 1′-2′ и A′B′ пересекаются между собой и дают точку пересечения M′, ее фронтальную проекцию.
4
Проведите линию связи от фронтальной проекции к горизонтальной проекции и таким образом найдите горизонтальную проекцию точки M.
5
Определите вторую точку пересечения плоскостей треугольника ABC и треугольника EDK, для чего проведите через сторону DK в треугольнике EDK вспомогательную плоскость Qv, ее фронтальную проекцию. Линией пересечения плоскости Qv с плоскостью треугольника ABC становится линия 3-4 и линия 3′-4′ в ее фронтальной проекции. Горизонтальные проекции 3-4 и DK пересекаются между собой и дают точку пересечения N, ее горизонтальную проекцию.
6
Проведите линию связи от горизонтальной проекции к фронтальной проекции и таким образом найдите точку N′, ее фронтальную проекцию.
7
Соедините точки проекции линии пересечения MN и линии пересечения M′N′. В результате вы получите две линии пересечения треугольников EDK и ABC в их фронтальной и горизонтальной проекции.