Инструкция
1
Пусть требуется сравнить два иррациональных числа. Первое, на что следует обратить внимание - это показатели степени корней у сравниваемых чисел. Если показатели одинаковы, то сравнивают подкоренные выражения. Очевидно, что чем больше подкоренное число, тем больше значение корня при равных показателях. Например, пусть надо сравнить кубический корень из двух и кубический корень из восьми. Показатели одинаковы и равны 3, подкоренные выражения 2 и 8, причем 2 < 8. Следовательно, и кубический корень из двух меньше кубического корня из восьми.
2
В другом случае показатели степени могут быть разными, а подкоренные выражения одинаковыми. Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число.Возьмите для примера кубический корень из восьми и корень шестой степени из восьми. Если обозначить значение первого корня как a, а второго - как b, то a^3 = 8 и b^6 = 8. Легко видеть, что a должно быть больше b, таким образом кубический корень из восьми больше корня шестой степени из восьми.
3
Более сложной представляется ситуация с разными показателями степени корня и разными подкоренными выражениями. В таком случае надо найти наименьшее общее кратное для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.Пример: надо сравнить 3^1/3 и 2^1/2 (математическая запись корней есть на рисунке). Наименьшее общее кратное для 2 и 3 равно 6. Возведите оба корня в шестую степень. Тут же получится, что 3^2 = 9 и 2^3 = 8, 9 > 8. Следовательно, и 3^1/3 > 2^1/2.
Полезный совет
Чтобы сравнить арифметические выражения, состоящие из нескольких корней, придется их приводить к общему корню. Это можно сделать, пользуясь формулами сокращенного умножения, формулой Бинома Ньютона и другими приемами.
Источники:
- Преобразования выражений, включающих корни натуральной степени
- кубический корень из 2