Инструкция
1
Необходимость рассчитать длину перпендикуляра может возникнуть, если он опущен из точки с указанными в условиях координатами A(X₁;Y₁) на прямую, заданную уравнением a*X + b*Y + C = 0. В этом случае сначала подставьте координаты точки в уравнение прямой и рассчитайте абсолютное значение левой части тождества: |a*X₁ + b*Y₁ + C|. Например, при координатах точки A(15;-17) и уравнении прямой 3*X + 4*Y + 140 = 0 результатом этого шага должно стать число |3*15 + 4*(-17) + 140| = |45-61+140| = 124.
2
Рассчитайте нормирующий множитель. Это дробь, в числителе которой стоит единица, а в знаменателе - квадратный корень из суммы квадратов множителей по обеим координатным осям из уравнения прямой: 1/√(X²+Y²). Для использованного выше примера величина нормирующего множителя должна быть равна 1/√(3²+4²) = 1/√25 = 0,2.
3
Приведите уравнение прямой к нормальному виду - умножьте обе части равенства на нормирующий множитель. В общем виде результат должен выглядеть так: (a*X+b*Y+C)/√(X²+Y²) = 0. Левая часть этого уравнения и определяет длину перпендикуляра в общем виде: d = (a*X+b*Y+C)/√(X²+Y²). А в практических расчетах просто перемножьте полученное на первом шаге число и рассчитанный на втором шаге коэффициент. Для примера из первого шага ответом должно стать число 124*0,2=24,8 - такова длина перпендикулярного линии отрезка, соединяющего ее с заданной точкой.
4
Для нахождения длины перпендикуляра, опущенного из точки с известными трехмерными координатами A(X₁;Y₁;Z₁) на плоскость, заданную уравнением a*X + b*Y + c*Z + D = 0 используйте такую же последовательность операций. В этом случае под знак радикала в нормирующем множителе добавится третье слагаемое √(X²+Y²+Z²), как и в числитель дроби формулы, определяющей длину перпендикуляра в общем виде: d = (a*X+b*Y+c*Z+D)/√(X²+Y²+Z²).