Инструкция
1
Если тело находится в покое и задана неподвижная система отсчета, его координаты в ней постоянны, с течением времени не меняются. Условное определение координат здесь зависит лишь выбора от нулевой точки и единиц измерения. График координат на осях «координаты-время» будет прямой, параллельной временной оси.
2
3
Если же тело движется по прямой равноускоренно, то x=x0+v0•t+a•t²/2. Здесь x0 – начальная координата, v0 – начальная скорость, a – постоянное ускорение. Линейную зависимость в этом случае имеет скорость: v=v0+a•t, график скорости – прямая. А вот график для координат будет похож на параболу.
4
Скорость – первая производная координаты по времени. Если задана функция зависимости скорости от времени и начальные условия, можно установить и зависимость координат. Для этого уравнение скорости нужно проинтегрировать, а для поиска интегральной константы подставить дополнительно известные величины.
5
Пример. Скорость тела зависит от времени и имеет формулу v(t)=4t. В начальный момент времени тело имело координату x0. Найдите, как координаты изменяются в зависимости от времени.
6
Решение. Поскольку v=dx/dt, то dx/dt=4t. Теперь нужно разделить переменные. Для этого перенесите дифференциал времени dt в правую часть равенства: dx=4t·dt. Всё, можно интегрировать: ∫dx=∫4t·dt. Можно воспользоваться таблицей простейших интегралов, которая есть в конце многих задачников по физике. Итак, x=2t²+C, где C – константа.
7
Для поиска константы обратитесь к заданным начальным условиям. В задаче сказано, что в начальный момент времени тело имело координату x0. Это означает, что x=x0 при t=0. Подставьте эти данные в полученную формулу для координаты: x0=0+C, отсюда C=x0. Константа найдена, теперь можно подставить ее в функцию x=2t²+C: x=2t²+x0.Ответ. Координата тела зависит от времени как x=2t²+x0.