Инструкция
1
Пусть тело брошено под углом α к горизонту с начальной скоростью v0. Начальные координаты тела пусть будут нулевыми: x(0)=0, y(0)=0. В проекциях на координатные оси начальная скорость разложится по двум составляющим: v0(x) и v0(y). То же самое относится к функции скорости вообще. По оси Ox скорость условно считается постоянной, по оси Oy меняется под воздействием силы тяжести. Ускорение свободного падения g можно принять примерно за 10м/с².
2
Угол α, под которым брошено тело, задан не случайно. Через него можно расписать начальную скорость в координатных осях. Так, v0(x)=v0·cos(α), v0(y)=v0·sin(α). Теперь можно получить функцию координатных составляющих скорости: v(x)=const=v0(x)=v0·cos(α), v(y)=v0(y)-g·t=v0·sin(α)-g·t.
3
Координаты тела x и y зависят от времени t. Таким образом, можно составить два уравнения зависимости: x=x0+v0(x)·t+a(x)·t²/2, y=y0+v0(y)·t+a(y)·t²/2. Поскольку по условию x0=0, a(x)=0, то x=v0(x)·t=v0·cos(α)·t. Также известно, что y0=0, a(y)=-g (знак «минус» появляется оттого, что направление ускорения свободного падения g и положительное направление оси Oy противоположны). Поэтому y=v0·sin(α)·t-g·t²/2.
4
Время полета можно выразить из формулы скорости, зная, что в максимальной точке тело на мгновение останавливается (v=0), а длительности «подъема» и «спуска» равны. Итак, при подстановке v(y)=0 в уравнение v(y)=v0·sin(α)-g·t получается: 0=v0·sin(α)-g·t(p), где t(p) – пиковое время, «t вершинное». Отсюда t(p)=v0·sin(α)/g. Общее время полета тогда выразится как t=2·v0·sin(α)/g.
5
Ту же формулу можно получить и другим способом, математическим, из уравнения для координаты y=v0·sin(α)·t-g·t²/2. Это уравнение можно переписать в немного измененном виде: y=-g/2·t²+v0·sin(α)·t. Видно, что это квадратичная зависимость, где y – функция, t – аргумент. Вершиной параболы, описывающей траекторию, является точка t(p)=[-v0·sin(α)]/[-2g/2]. Минусы и двойки сокращаются, поэтому t(p)=v0·sin(α)/g. Если обозначить максимальную высоту за H и вспомнить, что пиковая точка является вершиной параболы, по которой движется тело, то H=y(t(p))=v0²sin²(α)/2g. То есть, чтобы получить высоту, надо «t вершинное» подставить в уравнение для координаты y.
6
Итак, время полета записывается как t=2·v0·sin(α)/g. Чтобы его изменить, надо соответственно менять начальную скорость и угол наклона. Чем больше скорость – тем дольше летит тело. С углом несколько сложнее, ведь время зависит не от самого угла, а от его синуса. Максимально возможное значение синуса – единица – достигается при угле наклона в 90°. Это означает, что дольше всего тело летит тогда, когда его бросают вертикально вверх.
7
Дальность полета является конечной координатой x. Если подставить найденное уже время полета в уравнение x=v0·cos(α)·t, то легко найти, что L=2v0²sin(α)cos(α)/g. Здесь можно применить тригонометрическую формулу двойного угла 2sin(α)cos(α)=sin(2α), тогда L=v0²sin(2α)/g. Синус двух альфа равен единице тогда, когда 2α=п/2, α=п/4. Таким образом, дальность полета максимальна в том случае, если тело бросить под углом 45°.
Видео по теме
Источники:
- дальность полета формула