Теория и термины



В мире постоянно проводится множество лотерей с самыми различными правилами, условиями победы, призами, однако существуют общие принципы расчета вероятности выигрыша, которые можно адаптировать под условия той или иной конкретной лотереи. Но для начала желательно определиться с терминологией.

Итак, вероятность – это вычисленная оценка возможности того, что произойдет определенное событие, которая чаще всего выражается в форме отношения числа желаемых событий к общему числу исходов. Например, вероятность выпадения «орла» при подбрасывании монетки – один к двум.

Исходя из этого, очевидно, что вероятность выигрыша – это соотношение количества выигрышных комбинаций к числу всех возможных. Однако нельзя забывать, что критерии и определения понятия «выигрыш» тоже могут быть разными. К примеру, в большинстве лотерей используется такое определение как «класс выигрыша». Требования к выигрышу третьего класса ниже, чем к выигрышу первого, поэтому вероятность выигрыша первого класса самая низкая. Как правило, таким выигрышем является джек-пот.

Еще один значимый момент в расчетах заключается в том, что вероятность двух связанных событий вычисляется путем перемножения вероятностей каждого из них. Проще говоря, если вы подбросите монетку два раза, то вероятность выпадения «орла» каждый раз будет равна один к двум, но шанс, что «орел» выпадет оба раза, составит лишь один к четырем. В случае с тремя подбрасываниями шанс вообще упадет до одного к восьми.

Расчет шансов



Таким образом, для расчета шанса выигрыша джек-пота в абстрактной лотерее, где нужно верно угадать несколько выпавших значений из определенного числа шаров (например, 6 из 36), нужно рассчитать вероятность выпадения каждого из шести шаров и перемножить их между собой. Учтите, что с уменьшением числа шаров, оставшихся в барабане, вероятность выпадения нужного шара меняется. Если для первого шара вероятность того, что выпадет нужный, равна 6 к 36, то есть, 1 к 6, то для второго шанс составит 5 к 35 и так далее. В данном примере вероятность того, что билет окажется выигрышным составит 6x5x4x3x2x1 к 36x35x34x33x32x31, то есть 720 к 1402410240, что будет равно 1 к 1947792.

Несмотря на такие пугающие числа, люди регулярно выигрывают в лотереи по всему миру. Не забывайте, что даже если вы не возьмете главный приз, существуют еще выигрыши второго и третьего классов, вероятность получить которые намного выше. Кроме того, очевидно, что наилучшей стратегией является покупка нескольких билетов одного тиража, так как каждый дополнительный билет кратно увеличивает ваши шансы. Например, если купить не один билет, а два, то и вероятность победы будет в два раза больше: два из 1,95 миллиона, то есть примерно 1 к 950 тысячам.