Вам понадобится
  • - линейка
  • - циркуль
Инструкция
1
Очевидно, что если построить правильный десятиугольник, а затем соединить его вершины через одну, то получим пятиугольник. Для построения десятиугольника начертите окружность заданного радиуса. Обозначьте ее центр буквой O. Проведите два перпендикулярных друг друга радиуса, на рисунке они обозначены как OA1 и OB. Радиус OB разделите пополам с помощью линейки или методом деления отрезка пополам с помощью циркуля. Постройте маленькую окружность с центром C в середине отрезка OB радиусом, равным половине OB.
Соедините точку C с точкой A1 на исходной окружности по линейке. Отрезок CA1 пересекает вспомогательную окружность в точке D. Отрезок DA1 равен стороне правильного десятиугольника, вписанного в данную окружность. Циркулем отметьте этот отрезок на окружности, затем соедините точки пересечения через одну и вы получите правильный пятиугольник.
2
Еще один способ нашел немецкий художник Альбрехт Дюрер. Чтобы построить пятиугольник по его способу, начните снова с построения окружности. Снова отметьте ее центр O и проведите два перпендикулярных радиуса OA и OB. Радиус OA разделите пополам и середину отметьте буквой C. Установите иглу циркуля в точку C и раскройте его до точки B. Проведите окружность радиуса BC до пересечения с диаметром исходной окружности, на котором лежит радиус OA. Точку пересечения обозначьте D. Отрезок BD - сторона правильного пятиугольника. Отложите этот отрезок пять раз на исходной окружности и соедините точки пересечения.
3
Если же требуется построить пятиугольник по его заданной стороне, то вам нужен третий способ. Начертите по линейке сторону пятиугольника, обозначьте этот отрезок буквами A и B. Разделите его на 6 равных частей. Из середины отрезка AB проведите луч, перпендикулярный отрезку. Постройте две окружности радиусом AB и центрами в A и B, как если бы вы собирались делить отрезок пополам. Эти окружности пересекаются в точке С. Точка C при этом лежит на луче, исходящем перпендикулярно вверх из середины AB. Отложите от C вверх по этому лучу расстояние, равное 4/6 от длины AB, обозначьте эту точку D. Постройте окружность радиуса AB с центром в точке D. Пересечение этой окружности с двумя вспомогательными построенными ранее даст последние две вершины пятиугольника.