Вам понадобится
- базовые знания тригонометрии и геометрии
Инструкция
1
2
Воспользуйтесь теоремой косинусов, когда известны длины двух сторон a и b треугольника и угол α между ними. Найдите третью сторону по формуле c=√(a²+b²−2*a*b*cos(α)), так как квадрат длины любой стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними. Запишите теорему косинусов для двух других сторон: a²=b²+c²−2*b*c*cos(β), b²=a²+c²−2*a*c*cos(γ). Выразите из этих формул неизвестные углы: β=arccos((b²+c²−a²)/(2*b*c)), γ=arccos((a²+c²−b²)/(2*a*c)). Например, пусть в треугольнике известны стороны a=59, b=27, угол между ними α=47°. Тогда неизвестная сторона c=√(59²+27²−2*59*27*cos(47°))≈45. Значит β=arccos((27²+45²−59²)/(2*27*45))≈107°, γ=arccos((59²+45²−27²)/(2*59*45))≈26°.
3
Найдите углы треугольника, если известны длины всех трех сторон a, b и c треугольника. Для этого вычислите площадь треугольника по формуле Герона: S=√(p*(p−a)*(p−b)*(p−c)), где p=(a+b+c)/2 – полупериметр. С другой стороны, так как площадь треугольника равна S=0,5*a*b*sin(α), то выразите из этой формулы угол α=arcsin(2*S/(a*b)). Аналогично, β=arcsin(2*S/(b*c)), γ=arcsin(2*S/(a*c)). Например, пусть дан треугольник со сторонами a=25, b=23 и с=32. Тогда посчитайте полупериметр p=(25+23+32)/2=40. Вычислите площадь по формуле Герона: S=√(40*(40−25)*(40−23)*(40−32))=√(40*15*17*8)=√(81600)≈286. Найдите углы: α=arcsin(2*286/(25*23))≈84°, β=arcsin(2*286/(23*32))≈51°, а угол γ=180−(84+51)=45°.