Инструкция
1
Чтобы упростить многочлен, приведите подобные слагаемые. Пример. Упростите выражение 12ax²–y³–6ax²+3a²x–5ax²+2y³. Найдите одночлены с одинаковой буквенной частью. Сложите их. Запишите полученное выражение: ax²+3a²x+y³. Вы упростили многочлен.
2
В задачах, которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в состав всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.
3
Пример. Разложите на множители многочлен 5m³–10m²n²+5m². Вынесите за скобки m², т.к. переменная m входит в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен 5m². Отсюда: 5m³–10m²n²+5m²=5m²(m–2n²+1).
4
Если выражение не имеет общего множителя, попробуйте разложить его способом группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.
5
Пример. Разложите на множители многочлен a³–3a²+4a–12. Произведите группировку следующим образом: (a³–3a²)+(4a–12). Вынесите за скобку общий множитель a² в первой группе и общий множитель 4 во второй группе. Отсюда: a²(a–3)+4(a–3). Вынесите за скобки многочлен a–3, получите: (a–3)(a²+4). Следовательно, a³–3a²+4a–12=(a–3)(a²+4).
6
Некоторые многочлены раскладываются на множители при помощи формул сокращенного умножения. Для этого приведите многочлен к нужному виду способом группировки или при помощи вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.
7
Пример. Разложите на множители многочлен 4x²–m²+2mn–n². Объедините в скобки последние три члена, при этом вынесите за скобки –1. Получите: 4x²–(m²–2mn+n²). Выражение в скобках можно представить в виде квадрата разности. Отсюда: (2x)²–(m–n)². Это есть разность квадратов, значит, можно записать: (2x–m+n)(2x+m+n). Таким образом, 4x²–m²+2mn–n²=(2x–m+n)(2x+m+n).
8
Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов. Так, каждый многочлен третьей степени можно представить в виде (y–t)(my²+ny+k), где t, m, n, k – числовые коэффициенты. Следовательно, задача сводится к определению значений этих коэффициентов. Это делается, исходя из данного равенства: (y–t)(my²+ny+k)=my³+(n–mt)y²+(k–nt)y–tk.
9
Пример. Разложите на множители многочлен 2a³–a²–7a+2. Из второй части формулы для многочлена третьей степени составьте равенства: m=2; n–mt=–1; k–nt=–7; –tk=2. Запишите их в виде системы уравнений. Решите ее. Вы найдете значения t=2; n=3; k=–1. Подставьте вычисленные коэффициенты в первую часть формулы, получите: 2a³–a²–7a+2=(a–2)(2a²+3a–1).
Источники:
- Разложение многочленов на множители
- как разложить на множители на многочлен