Инструкция
1
Итак, для того чтобы решить кубическое уравнение вида Ах³+Вх²+Сх+D=0, необходимо методом подбора найти один из корней уравнения. Корнем кубического уравнения всегда является один из делителей свободного члена уравнения. Таким образом, на первом этапе решения уравнения, нужно найти все целые числа, на которые свободный член D делится без остатка.
2
Полученные целые числа поочередно подставляются в кубическое уравнение вместо неизвестной переменной x. То число, которое обращает равенство в верное, является корнем уравнения.
3
Один из корней уравнения найден. Для дальнейшего решения следует применить метод деления многочлена на двучлен. Многочлен Ах³+Вх²+Сх+D – является делимым, а двучлен х-х₁, где х₁, - первый корень уравнения - делителем. Результатом деления будет являться квадратный многочлен вида ах²+bx+с.
4
Если приравнять полученный многочлен к нулю ах²+bx+с =0, получится квадратное уравнение, корни которого и будут являться решением исходного кубического уравнения, т.е. x₂‚₃=(-b±√(b^2-4ac))/2a