Инструкция
1
Представление вектора в ортогональном пространстве суммой нескольких направленных отрезков, каждый из которых лежит на одной из осей, называют разложением вектора на составляющие. В условиях задачи вектор может быть задан скалярными величинами своих составляющих. Например, запись ā(X;Y), означает, что величина составляющей вдоль оси абсцисс равна X, а вдоль оси ординат Y. Если в условиях есть координаты начальной точки направленного отрезка А(X₁;Y₁), вычислить пространственное положение конечной точки B будет легко - просто прибавьте к значениям абсциссы и ординаты величины составляющих, которыми задан вектор: B(X₁+X;Y₁+Y).
2
Для трехмерной системы координат используйте те же правила - они действительны в декартовом пространстве любой размерности. Например, вектор может быть задан набором из трех чисел ā(28;11;-15) и координатами точки приложения А(-38;12;15). Тогда координатам конечной точки на оси абсцисс будет соответствовать отметка 28+(-38)=-10, на оси ординат 11+12=23, а на оси аппликат -15+15=0: В(-10;23;0).
3
Если в исходных условиях приведены координаты начальной точки вектора А(X₁;Y₁), длина направленного отрезка |AВ|=a и величина его наклона α к одной из координатных осей, такой набор данных тоже позволит однозначно определить конечную точку в двухмерном пространстве. Рассмотрите треугольник, составленный вектором и двумя его проекциями на координатные оси. Угол, образованный проекциями, будет прямым, а напротив одной из них - например, X - будет лежать угол известной из условий задачи величины α. Чтобы найти длину этой проекции используйте теорему синусов: X/sin(α) = a/sin(90°). Из нее вытекает, что X=a*sin(α).
4
Для нахождения второй проекции (Y) воспользуйтесь тем, что по теореме о сумме углов треугольника лежащий напротив нее угол должен быть равен 180°-90°-α=90°-α. Это даст вам возможность для вычисления длины и этой проекции применить теорему синусов - выделите Y из равенства Y/sin(90°-α) = a/sin(90°). В результате у вас должна получиться такая формула: Y=a*sin(90°-α).
5
Подставьте полученные на двух предыдущих шагах выражения для длин проекций в формулу из первого шага и рассчитайте координаты конечной точки. Если решение надо представить в общем виде, искомые координаты запишите так: В(X₁+a*sin(α);Y₁+a*sin(90°- α)).