Инструкция
1
Начните с нахождения общего множителя для выражений, стоящих в числителе и знаменателе дроби - это правило одинаково как для численных соотношений, так и для содержащих неизвестные переменные. Например, если в числителе стоит выражение 45*X, а в знаменателе 18*Y, то наибольшим общим множителем будет число 9. После выполнения этого шага числитель можно записать как 9*5*X, а знаменатель - как 9*2*Y.
2
Если выражения в числителе и знаменателе содержат комбинацию основных математических операций (умножение, деление, сложение и вычитание), то сначала придется вынести за скобки общий множитель для каждого из них в отдельности, а затем вычленить из этих чисел наибольший общий делитель. Например, для выражения 45*X+180, стоящего в числителе, за скобки следует вынести множитель 45: 45*X+180 = 45*(X+4). А выражение 18+54*Y в знаменателе надо привести к виду 18*(1+3*Y). Затем, как в предыдущем, шаге найдите наибольший общий делитель вынесенных за скобки множителей: 45*X+180 / 18+54*Y = 45*(X+4) / 18*(1+3*Y) = 9*5*(X+4) / 9*2*(1+3*Y). В этом примере он тоже равен девятке.
3
Сократите найденный на предыдущих шагах общий множитель выражений в числителе и знаменателе дроби. Для примера из первого шага всю операцию упрощения можно записать так: 45*X / 18*Y = 9*5*X / 9*2*Y = 5*X / 2*Y.
4
Не обязательно при упрощении сокращаемым общим делителем должно быть число, это может быть и выражение, содержащее переменную. Например, если в числителе дроби стоит (4*X + X*Y + 12 + 3*Y), а в знаменателе (X*Y + 3*Y - 7*X - 21), то наибольшим общим делителем будет выражение X+3, которое и следует сократить для упрощения выражения: (4*X + X*Y + 12 + 3*Y) / (X*Y + 3*Y - 7*X - 21) = (X+3)*(4+Y) / (X+3)*(Y-7) = (4+Y) / (Y-7).