Инструкция
1
Наиболее простой случай возникает, когда в условии задачи дан равнобедренный треугольник с некоторой стороной a. Две боковые стороны такого треугольника равны, а все медианы пересекаются в одной точке. Кроме того, медиана в равнобедренном треугольнике, проведенная к основанию, является и высотой, и биссектрисой. Соответственно, в треугольнике ABC возникнет треугольник BHC, и по теореме Пифагора можно будет вычислить HC - половину стороны AC:HC=√[(CB)^2-(BH)^2]Следовательно, AC=2√[(CB)^2-(BH)^2]В равнобедренном треугольнике угол α=γ, как это показано на рисунке.
2
Если в условии задачи приведено значение длины медианы равнобедренного треугольника, проведенной к его боковой стороне, решайте задачу несколько иным способом. Во-первых, медиана не перпендикулярна к боковой стороне фигуры, а во-вторых, формула зависимости между медианой и тремя сторонами выглядит следующим образом:ma=√2(c^2+b^2)-a^2По этой формуле найдите ту сторону, которую медиана делит пополам.
3
Если треугольник является неправильным, то информации о медиане и стороне недостаточно. Необходимо знать также угол между медианой и стороной. Чтобы решить задачу, вначале найдите по теореме косинусов половину стороны треугольника:c^2=a^2+b^2-2ab*cosγ, где c - сторона, которую нужно найти.Если получается так, что используя теорему косинусов, можно найти лишь только половину стороны, то тогда вычисляемое значение умножается на два. Например, дана медиана и прилежащая к ней сторона, между которыми находится угол. Противоположная углу сторона делится медианой пополам. Вычислив половину стороны по теореме косинусов, получим:BC = 2c, где c - 1/2 стороны BC
4
Решение прямоугольных треугольников является таким же, как и у любого неправильного треугольника, если нам не известны его углы, а дан лишь только угол между медианой и стороной. Узнав вторую сторону, уже можно найти и третью по теореме Пифагора. Такие задачи помогают искать помимо сторон и другие параметры треугольников. К ним относятся, например, площадь и периметр, которые вычисляются по заданным сторонам и углам.
Видео по теме