Инструкция
1
Первым шагом в решении задачи по определению интервалов, в которых функция монотонно возрастает или убывает, станет вычисление области определения данной функции. Для этого узнайте все значения аргументов (значения по оси абсцисс), для которых можно найти значение функции. Отметьте точки, в которых наблюдаются разрывы. Найдите производную функции. Определив выражение, которое представляет собой производную, приравняйте его к нулю. После этого следует найти корни получившегося уравнения. Не забывайте про область допустимых значений.
2
Точки, в которых функция не существует либо в которых ее производная равна нулю, представляют собой границы интервалов монотонности. Эти диапазоны, а также точки, их разделяющие, следует последовательно внести в таблицу. Найдите знак производной функции в полученных промежутках. Для этого подставьте в выражение, соответствующее производной, любой аргумент из интервала. Если результат положительный, функция в данном диапазоне возрастает, в обратном случае — убывает. Результаты вносятся в таблицу.
3
В строку, обозначающую производную функции f’(x), записывается соответствующий значениям аргументов символ: «+» — если производная положительна,«-» — отрицательна или «0» – равна нулю. В следующей строке отметьте монотонность самого исходного выражения. Стрелка вверх соответствует возрастанию, стрелка вниз – убыванию. Отметьте точки экстремума функции. Это точки, в которых производная равна нулю. Экстремум может быть либо точкой максимума, либо точкой минимума. Если предыдущий участок функции возрастал, а текущий убывает, значит это точка максимума. В случае, когда до данной точки функция убывала, а теперь возрастает – это точка минимума. Внесите в таблицу значения функции в точках экстремума.