Вам понадобится
- Доступ в интернет.
Инструкция
1
Если к числу или выражению требуется применить одновременно и операцию извлечения корня, и возведения его в степень, сведите оба действия в одно - в возведение в степень с дробным показателем. В числителе дроби должен стоять показатель степени, а в знаменателе - корня. Например, если нужно возвести в квадрат кубический корень, то две эти операции будут эквивалентны одному возведению числа в степень ⅔.
2
Если в условиях требуется возвести в квадрат корень с показателем степени, равным двойке, это задача не на вычисление, а на проверку ваших знаний. Воспользуйтесь способом из первого шага, и вы получите дробь 2/2, т.е. 1. Это значит, что результатом возведения в квадрат квадратного корня из любого числа будет само это число.
3
При необходимости возвести в квадрат корень с четным показателем степени, всегда есть возможность упростить операцию. Так как у двойки (числителя дробного показателя степени) и любого четного числа (знаменателя) есть общий делитель, то после упрощения дроби в числителе останется единица, а это значит, что возводить в степень при расчетах не требуется, достаточно извлечь корень с половинным показателем степени. Например, возведение в квадрат корня шестой степени из восьмерки можно свести к извлечению из нее кубического корня, т.к. 2/6=1/3.
4
Для вычисления результата при любых показателях степени корня воспользуйтесь, например, калькулятором, встроенным в поисковую систему Google. Это, пожалуй, самый легкий способ расчетов при наличии выхода в интернет с вашего компьютера. Общепринятым заменителем знака операции возведения в степень является вот такая «крышка»: ^. Используйте ее при вводе в Google поискового запроса. Например, если требуется возвести в квадрат корень пятой степени из числа 750, сформулируйте запрос так: 750^(2/5). После его ввода поисковик даже без нажатия кнопки отправки на сервер покажет результат вычислений с точностью до семи знаков после запятой: 750^(2 / 5) = 14,1261725.
Источники:
- корень кубический в квадрате