Инструкция
1
Если под знаком модуля находится число, значение которого вам известно, то раскрыть его очень просто. Модуль числа a, или |a|, будет равен самому этому числу, если a больше либо равно 0. Если a меньше нуля, то есть является отрицательным, то его модуль будет равен противоположному ему, то есть |-a|=a. Согласно этому свойству, модули противоположных чисел равны, то есть |-a|=|a|.
2
В том случае, если подмодульное выражение возведено в квадрат или в другую четную степень, то можно просто опустить скобки модуля, так как любое число, возведенное в четную степень, является неотрицательным. Если нужно извлечь квадратный корень из квадрата числа, то это также будет модуль этого числа, поэтому модульные скобки можно опустить и в этом случае.
3
Если в подмодульном выражении имеются неотрицательные числа, то их можно вынести за пределы модуля. |c*x|=c*|x|, где с – неотрицательное число.
4
Когда имеет место уравнение вида |x|=|c|, где x является искомой переменной, а c действительным числом, то раскрыто оно должно быть следующим образом: x=+-|c|.
5
Если нужно решить уравнение, содержащее модуль выражения, результатом которого должно быть вещественное число, то знак модуля раскрывают, исходя из свойств этой неопределенности. К примеру, если имеется выражение |x-12|, то, если (x-12) – неотрицательное, оно останется неизменным, то есть модуль раскроется как (x-12). Но |x-12| превратится в (12-x), если (x-12) меньше нуля. То есть, модуль раскрывается в зависимости от значения переменной или выражения в скобках. Когда знак результата выражения неизвестен, то задача превращается в систему уравнений, первое из которых рассматривает возможность отрицательного значения подмодульного выражения, а второе – положительного.
6
Иногда модуль можно однозначно раскрыть, даже если его значение неизвестно по условиям задачи. Например, если под модулем находится квадрат переменной, то результат будет положительным. И наоборот, если там заведомо отрицательное выражение, то модуль раскрывается с противоположным знаком.