Инструкция
1
Если известна длина ребра куба (a), то вы можете использовать наиболее распространенный из всех возможных вариантов формулы вычисления площади его поверхности (S). По определению каждая грань этой фигуры имеет форму квадрата, а его площадь равна длине грани, возведенной во вторую степень. Так как всего таких граней у куба шесть, то это число надо увеличить именно во столько раз: S = 6*a².
2
Если длина ребра неизвестна, но дан объем (V) пространства, ограничиваемого сторонами куба, то площадь (S) тоже можно определить. Так как единственная известная из условий величина для этой фигуры находится возведением длины ребра в третью степень, то длину стороны каждой грани можно определить, если извлечь кубический корень из этого параметра. Подставьте это выражение в равенство из предыдущего шага и вы получите такую формулу: S = 6*(³√V)².
3
Если известна длина диагонали куба (L), то через нее тоже можно выразить длину одной грани, а значит и рассчитать площадь поверхности гексаэдра. Диагональ находится умножением длины грани на квадратный корень из тройки - выразите из этой формулы размер одной стороны квадрата и подставьте полученное значение во все то же равенство из первого шага: S = 6*(L/√3)² = 2*L².
4
Если известен радиус описанной около куба сферы (R), то формулу вычисления площади поверхности можно вывести из полученного на предыдущем шагу выражения. Так как любая из диагоналей куба совпадает с диаметром такой сферы, а диаметр - это удвоенный радиус, то вам надо трансформировать формулу к такому виду: S = 2*(2*R)² = 8*R².
5
Еще проще получить формулу вычисления площади поверхности (S) гексаэдра, если известен радиус (r) не описанной, а вписанной в эту фигуру сферы. Ее диаметр (удвоенный радиус) равен длине ребра куба. Подставьте это значение в формулу из первого шага и получите такое равенство: S = 6*(2*r)² = 24*r².