Вам понадобится
- - таблица простых чисел;
- - признаки делимости чисел;
- - калькулятор.
Инструкция
1
Чаще всего, нужно разложить число на простые множители. Это числа, которые делят исходное число без остатка, и при этом сами могут делиться без остатка только на само себя и единицу (к таким числам относятся 2, 3, 5, 7, 11, 13, 17 и т.д.). Причем, никакой закономерности в ряду простых чисел не найдено. Возьмите их из специальной таблицы или найдите при помощи алгоритма, который называется «решето Эратосфена».
2
Начинайте подбирать простые числа, на которые делится данное число. Частное снова делите на простое число и продолжаете этот процесс до тех пор, пока в качестве частного не останется простое число. Затем просто посчитайте количество простых делителей, прибавьте к нему число 1 (которое учитывает последнее частное). Результатом будет количество простых делителей, которые при умножении дадут искомое число.
3
Например, количество простых делителей числа 364 найдите таким образом:
364/2=182
182/2=91
91/7=13
Получите числа 2, 2, 7, 13, которые являются простыми натуральными делителями числа 364. Их количество равно 3 (если считать повторяющиеся делители за один).
364/2=182
182/2=91
91/7=13
Получите числа 2, 2, 7, 13, которые являются простыми натуральными делителями числа 364. Их количество равно 3 (если считать повторяющиеся делители за один).
4
Если же нужно найти общее количество всех возможных натуральных делителей числа, воспользуйтесь его каноническим разложением. Для этого по описанной выше методике разложите число на простые множители. Затем запишите число как произведение таких множителей. Повторяющиеся числа возведите в степени, например, если трижды получали делитель 5, то запишите его как 5³.
5
Записывайте произведение от наименьших множителей к наибольшим. Такое произведение и называется каноническим разложением числа. Каждый множитель этого разложения имеет степень, представленную натуральным числом (1, 2, 3, 4 и т.д.). Обозначьте показатели степени при множителях а1, а2, а3, и т.д. Тогда общее количество делителей будет равно произведению (a1 + 1)∙(a2 + 1)∙(a3+1)∙…
6
Например, возьмите то же число 364: его каноническое разложение 364=2²∙7∙13. Получите а1=2, а2=1, а3=1, тогда количество натуральных делителей этого числа будет равно (2+1)∙(1+1)∙(1+1)=3∙2∙2=12.