Понятие тождества в математике означает равенство, которое выполняется при любых значениях аргументов входящих в него функций. Тригонометрические тождества – это равенства тригонометрических функций, доказанные и принятые для облегчения работы с тригонометрическими формулами.Тригонометрическая функция – это элементарная функция зависимости одного из катетов прямоугольного треугольника от величины острого угла при гипотенузе. Чаще всего используются шесть основных тригонометрических функций: sin (синус), cos (косинус), tg (тангенс), ctg (котангенс), sec (секанс) и cosec (косеканс). Эти функции называются прямыми, существуют также обратные функции, например, синус – арксинус, косинус – арккосинус и т.д.Изначально тригонометрические функции нашли отражение в геометрии, затем распространились в другие области науки: физику, химию, географию, оптику, теорию вероятностей, а также акустику, теорию музыки, фонетику, компьютерную графику и многие другие. Теперь уже трудно представить себе математические расчеты без этих функций, хотя в далеком прошлом они применялись только в астрономии и архитектуре.Тригонометрические тождества применяются для облегчения работы с длинными тригонометрическими формулами и приведения их к удобоваримому виду. Основных тригонометрических тождеств шесть, они связаны с прямыми тригонометрическими функциями:• tg ? = sin ?/cos ?;• sin^2? + cos^2? = 1;• 1 + tg^2? = 1/cos^2?;• 1 + 1/tg^2? = 1/sin^2?;• sin (?/2 - ?) = cos ?;• cos (?/2 - ?) = sin ?.Эти тождества легко доказать из свойств соотношения сторон и углов в прямоугольном треугольнике:sin ? = BC/AC = b/c; cos ? = AB/AC = a/c; tg ? = b/a.Первое тождество tg ? = sin ?/cos ? следует из соотношения сторон в треугольнике и исключением стороны c (гипотенузы) при делении sin на cos. Таким же образом определяется тождество ctg ? = cos ?/sin ?, поскольку ctg ? = 1/tg ?.По теореме Пифагора a^2 + b^2 = c^2. Разделим это равенство на c^2, получим второе тождество:a^2/c^2 + b^2/c^2 = 1 => sin^2 ? + cos^2 ? = 1.Третье и четвертое тождества получает путем деления, соответственно, на b^2 и a^2:a^2/b^2 + 1 = c^2/b^2 => tg^2 ? + 1 = 1/cos^2 ?;1 + b^2/a^2 = c^2/a^2 => 1 + 1/tg^2 ? = 1/sin^ ? или 1 + ctg^2 ? = 1/sin^2 ?.Пятое и шестое основные тождества доказываются через определение суммы острых углов прямоугольного треугольника, которая равна 90° или ?/2.Более сложные тригонометрические тождества: формулы сложения аргументов, двойного и тройного угла, понижения степени, преобразования суммы или произведения функций, а также формулы тригонометрической подстановки, а именно выражения основных тригонометрических функций через tg половинного угла:sin ?= (2*tg ?/2)/(1 + tg^2 ?/2);cos ? = (1 – tg^2 ?/2)/(1 = tg^2 ?/2);tg ? = (2*tg ?/2)/(1 – tg^2 ?/2).
Что такое тригонометрические тождества
Тригонометрия – раздел математики для изучения функций, выражающих различные зависимости сторон прямоугольного треугольника от величин острых углов при гипотенузе. Такие функции получили называние тригонометрических, а для упрощения работы с ними были выведены тригонометрические тождества.