Инструкция
1
Перевести обычное для нас десятичное число в двоичную систему счисления можно с помощью стандартных программных средств операционной системы Microsoft Windows. Для этого откройте меню «Пуск» на вашем компьютере, в появившемся меню кликните «Все программы», выберите папку «Стандартные» и найдите в ней приложение «Калькулятор». В верхнем меню калькулятора выберите пункт «Вид», а затем «Программист». Форма калькулятора преобразуется.
2
Теперь введите число для перевода. В специальном окне под полем ввода вы увидите результат перевода числа в двоичный код. Так, например, после ввода числа 216 вы получите результат 1101 1000.
3
Существуют специальные приложения для смартфонов, такие как, например, RealCalc для операционной системы Android. Эта бесплатная программа из Android Market также умеет переводить десятичные числа в двоичные.
4
Если у вас под рукой нет ни компьютера, ни смартфона, вы можете самостоятельно попробовать перевести число, записанное арабскими цифрами, в двоичный код. Для этого необходимо постоянно делить число на 2 до того момента, пока не останется последнего остатка или результат не достигнет нуля. Выглядит это так (на примере числа 19):
19 : 2 = 9 – остаток 1
9 : 2 = 4 – остаток 1
4 : 2 = 2 – остаток 0
2 : 2 = 1 – остаток 0
1 : 2 = 0 – достигнут 1 (делимое меньше делителя)
Выпишите остаток в обратную сторону – с самого последнего к самому первому. Вы получите результат 10011 – это и есть число 19 в двоичной системе счисления.
19 : 2 = 9 – остаток 1
9 : 2 = 4 – остаток 1
4 : 2 = 2 – остаток 0
2 : 2 = 1 – остаток 0
1 : 2 = 0 – достигнут 1 (делимое меньше делителя)
Выпишите остаток в обратную сторону – с самого последнего к самому первому. Вы получите результат 10011 – это и есть число 19 в двоичной системе счисления.
5
Для перевода дробного десятичного числа в двоичную систему вначале необходимо перевести целую часть дробного числа в двоичную систему счисления, как это было показано в примере выше. Затем нужно дробную часть привычного числа умножить на основание двоичной системы счисления. В результате произведения необходимо выделить целую часть – она принимает значение первого разряда числа в двоичной системе после запятой. Финал алгоритма наступает, когда дробная часть произведения обращается в ноль, или если достигнута требуемая точность вычислений.