Вам понадобится
- - бумага;
- - ручка;
- - линейка.
Инструкция
1
Пусть параллелограмм задан векторами двух его сторон (остальные две попарно равны) в соответствии с рис. 1. Вообще-то равных векторов на плоскости сколь угодно много. Для этого требуется равенство их длин (точнее модулей – |a|) и направления, которое задается наклоном к какой-либо оси (в декартовых координатах это ось 0Х). Поэтому для удобства в задачах подобного типа векторы, как правило, задают их радиус-векторами r=а, у которых начало всегда лежит в начале координат.
2
Для нахождения угла между сторонами параллелограмма понадобится вычислить геометрическую сумму и разность векторов, а также их скалярное произведение (a,b). По правилу параллелограмма геометрическая сумма векторов a и b равна некоторому вектору с=а+b, который построен и лежит на диагонали параллелограмма AD. Разность a и b – вектор d=b-a, построенный на второй диагонали BD. Если векторы заданы координатами, а угол между ними составляет ф, тогда их скалярное произведение – это число, равное произведению модулей векторов и cosф (см. рис1): (a, b) = |a||b|cos ф
3
В декартовых координатах если а={x1, y1} и b={x2, y2}, то (a, b) = x1y2 +x2y1. При этом скалярный квадрат вектора (а,а)=|a|^2=x1^2 +x2^2. Для вектора b – аналогично. Тогда: |a||b|cos ф = x1y2 +x2y1. Следовательно cosф=(x1y2 +x2y1)/(|a||b|). Таким образом алгоритм решения задачи состоит в следующем:1. Нахождение координат векторов диагоналей параллелограмма как векторов суммы и разности векторов его сторон с=а+b и d=b-a. При этом соответствующие координаты a и b просто складываются или вычитаются. c= a+ b ={x3, y3}= { x1+x2, y1+y2},d= b-a ={x4, y4}={ x2 –x1, y2-y1}. 2. Нахождение косинуса угла между векторами диагоналей (назовем его фД) по приведенному общему правилу cosфд=(x3y3 +x4y4)/(|c||d|)
4
Пример. Найти угол между диагоналями параллелограмма, заданного векторами своих сторон a={1, 1} и b ={1, 4}. Решение. Согласно приведенному алгоритму вам необходимо найти векторы диагоналей c={1+1, 1+4}={2, 5} и d={1-1, 4-1}={0, 3}. Теперь вычислите cosфд =(0+15)/(sqrt(4+25)sqrt9)= 15/3sqrt29=0,92. Ответ: фд= arcos(0,92).