Инструкция
1
Найдите производную функции. Производная характеризует изменение функции в определенной точке и определяется как предел отношения приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.
2
Приравняйте данную производную к нулю (в данном случае x2=0).
3
Найдите значение переменной данного выражения. Это будут те значения, при которых данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2x2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1
4
Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных промежутков. На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На промежутке от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет стоять знак минус. Если x=0, то значение будет равно 2, а значит на данном промежутке ставится положительный знак. Если x=1, то производная также будет равна -0,24 и потому ставится минус.
5
Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.