Вам понадобится
- - циркуль;
- - линейка;
- - калькулятор.
Инструкция
1
Если заданы фокус и директриса конического сечения, то для нахождения эксцентриситета воспользуйтесь определением этого класса фигур. Все невырожденные конические сечения (за исключением окружности) можно построить следующим способом:- выберите на плоскости точку и прямую;- задайте вещественное положительное число е;- отметьте все точки, для которых расстояние до выбранной точки и до прямой отличается в е раз.
2
При этом выбранная точка будет называться фокусом конического сечения, прямая - директрисой, а число е - эксцентриситетом. В зависимости от величины числа е, получается четыре типа конических сечений:- при е1 – гипербола; - при е=0 – окружность (условно).
3
Исходя из определения, для того чтобы найти эксцентриситет конического сечения:- выберите на этой фигуре произвольную точку;- измерьте расстояние от этой точки до фокуса сечения;- измерьте расстояние от этой точки до директрисы (для этого, опустите на директрису перпендикуляр и определите точку пересечения директрисы и перпендикуляра);- разделите расстояние от точки до фокуса на расстояние от точки до директрисы.
4
Если известны длины большой и малой осей эллипса (его «длина» и «ширина»), то для вычисления эксцентриситета воспользуйтесь следующей формулой:е = √(1-а²/A²), где а, А – длины малой и большой осей (или полуосей), соответственно.
5
Если по условиям задачи заданы радиусы апоцентра и перицентра эллипса, то чтобы найти эксцентриситет, примените следующую формулу:е = (Ra-Rp)/(Ra+Rp), где Ra и Rp – радиусы апоцентра и перицентра эллипса, соответственно (радиусом апоцентра называется расстояние от фокуса эллипса до наиболее удаленной точки; радиусом перицентра называется расстояние от фокуса эллипса до наименее удаленной точки).
6
Если известны расстояние между фокусами эллипса и длина его большей оси, то для расчета эксцентриситета просто разделите расстояние между фокусами на длину оси:е = f/A, где f – расстояние между фокусами эллипса.