Вам понадобится
  • - понятие вектора;
  • - свойства векторов;
  • - декартовы координаты;
  • - тригонометрические функции.
Инструкция
1
В том случае, если известны длины векторов и угол между ними, то для того, чтобы найти площадь параллелограмма, построенного на векторах, найдите произведение их модулей (длин векторов), на синус угла между ними S=│a│•│ b│•sin(α).
2
Если векторы заданы в декартовой системе координат, то для того, чтобы найти площадь параллелограмма, построенного на них, проделайте следующие действия:
3
Найдите координаты векторов, если они не даны сразу, отняв от соответствующих координат концов векторов, координаты из начал. Например, если координаты начальной точки вектора (1;-3;2), а конечной (2;-4;-5), то координаты вектора будут (2-1;-4+3;-5-2)=(1;-1;-7). Пусть координаты вектора а(x1;y1;z1), вектора b(x2;y2;z2).
4
Найдите длины каждого из векторов. Возведите каждую из координат векторов в квадрат, найдите их сумму x1²+y1²+z1². Из получившегося результата извлеките корень квадратный. Для второго вектора проделайте ту же процедуру. Таким образом, получится │a│и│ b│.
5
Найдите скалярное произведение векторов. Для этого перемножьте их соответствующие координаты и сложите произведения │a b│= x1• x2+ y1•y2+ z1• z2.
6
Определите косинус угла между ними для чего скалярное произведение векторов, получившееся в п.3 поделите на произведение длин векторов, которые были рассчитаны в п. 2 (Cos(α)= │a b│/(│a│•│ b│)).
7
Синус полученного угла будет равен корню квадратному из разности числа 1, и квадрата косинуса того же угла, рассчитанного в п. 4 (1-Cos²(α)).
8
Рассчитайте площадь параллелограмма, построенного на векторах найдя произведение их длин, вычисленное в п. 2, а результат умножьте на число, получившееся после расчетов в п.5.
9
В том случае, если координаты векторов заданны на плоскости, при расчетах координата z просто отбрасывается. Данный расчет является числовым выражением векторного произведения двух векторов.