Инструкция
1
Если кроме величины угла (γ), образованного двумя сторонами треугольника, известны и длины этих сторон (A и B), то площадь (S) фигуры можно определить, как половину от произведения длин известных сторон на синус этого известного угла: S=½×A×B×sin(γ).
2
Если кроме величины одного угла (γ), известна и длина прилегающей к ней стороны (A), а также величина второго угла (β), тоже прилегающего к этой стороне, то площадь (S) треугольника можно вычислить, если найти частное от деления возведенной в квадрат длины единственной известной стороны на удвоенную сумму котангенсов обоих известных углов: S=½×A²/(ctg(γ)+ctg(β)).
3
При тех же исходных данных, когда в треугольнике известны величины двух углов (γ и β) и длина стороны между ними (A), можно рассчитать площадь (S) фигуры и немного по-другому. Для этого потребуется найти произведение возведенной в квадрат длины известной стороны на синусы обоих углов, а полученный результат разделить на удвоенный синус суммы этих углов: S=½×A²×sin(γ)×sin(β)/sin(γ+β).
4
Если известны величины всех трех углов (α, β, γ) в вершинах треугольника, а также длина хотя бы одной из его сторон (A), то площадь (S) можно определить, вычислив дробь, в числителе которой будет произведение возведенной в квадрат длины известной стороны на синусы прилегающих к ней углов, а в знаменателе - удвоенный синус угла, лежащего напротив известной стороны: S=½×A²×sin(γ)×sin(β)/sin(α).
5
Если же величины всех трех углов известны (α, β, γ), а данных о длинах сторон нет, но дан радиус (R) описанной возле треугольника окружности, то этот набор данных тоже позволит вычислить площадь (S) фигуры. Для этого надо удвоить произведение возведенного в квадрат радиуса на синусы всех трех углов: S=2×R²×sin(α)×sin(β)×sin(γ).