Вам понадобится
  • Знания по геометрии.
Инструкция
1
Пусть даны две прямые с уравнениями Ax + By = C и Dx + Ey = F. Выразим из этих уравнений прямых коэффициент угла наклона. Для первой прямой этот коэффициент равен A/B, а для второй D/E соответственно. Для наглядности рассмотрим пример. Уравнение первой прямой 4x+6y=20, уравнение второй прямой -3x+5y=3. Коэффициенты угла наклона будут соответственно равны: 0.67 и -0.6.
2
Теперь необходимо найти угол наклона каждой прямой. Для этого посчитаем арктангенс от углового коэффициента. В рассматриваемом примере углы наклона прямых будут равны arctg(0.67) = 34 градуса и arctg(-0.6) = -31 градус соотвественно.
3
Так одна прямая умеет отрицательный угловой коэффициент, а вторая положительный, то угол между этими прямыми будет равен сумме абсолютных величин этих углов. В случае же, когда угловые коэффициенты оба отрицательны или оба положительны, то угол находится путем вычитания из большего угла меньшего. В рассматриваемом примере получим, что угол между прямыми равен |34| + |-31| = 34 + 31 = 65 градусов.