Инструкция
1
2
Задача по нахождению медианы может быть решена через дополнительные построения треугольника до параллелограмма и решение через теорему о диагоналях параллелограмма.Продлим стороны треугольника и медиану, достроив их до параллелограмма. Таким образом, медиана треугольника будет равна половине диагонали получившегося параллелограмма, две стороны треугольника - его боковым сторонам (a, b), а третья сторона треугольника, к которой была проведена медиана, является второй диагональю получившегося параллелограмма. Согласно теореме, сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон.
2*(a^2 + b^2) = d1^2 + d2^2,
где
d1, d2 - диагонали получившегося параллелограмма;
отсюда:
d1 = 0.5*v(2*(a^2 + b^2) - d2^2)
2*(a^2 + b^2) = d1^2 + d2^2,
где
d1, d2 - диагонали получившегося параллелограмма;
отсюда:
d1 = 0.5*v(2*(a^2 + b^2) - d2^2)