Вам понадобится
  • Умение решать квадратные уравнения
Инструкция
1
Для того, чтобы решить квадратное неравенство методом интервалов, сперва нужно решить соответствующее квадратное уравнение. Переносим все члены уравнения с переменной и свободный член в левую часть, в правой части остается ноль. Корни квадратного уравнения, соответствующего неравенству (в нем знак "больше" или
"меньше" заменен на "равно") можно найти по известным формулам через дискриминант.
2
На втором этапе мы записываем неравенство в виде произведения двух скобок (x-x1)(x-x2)<>0.
3
Отмечаем найденные корни на числовой оси. Далее мы смотрим на знак неравенства. Если неравенство строгое ("больше" и "меньше"), то точки, которыми отмечаем корни на координатной оси пустые, в противном случае ("больше или равно").
4
Берем число, левее первого (правого на числовой оси корня). Если при подстановке этого числа в неравенство, оно оказывается правильным, то интервал от "минус бесконечности" до самого малого корня является одним из решений уравнения, наравне с интервалом от второго корня до "плюс бесконечности". Иначе решением будет интервал между корнями.