Инструкция
1
Если кроме значения косинуса угла известны длины пары сторон (b и c), которые образуют этот угол, для вычисления величины неизвестной стороны (a) можно использовать теорему косинусов. Она утверждает, что квадрат длины нужной стороны будет равен сумме квадратов длин двух других, если ее уменьшить на удвоенное произведение длин этих же сторон на известный из условий косинус угла между ними: a² = b² + c² - 2*a*b*cos(α).
2
Поскольку величина угла α вам неизвестна и вычислять ее нет необходимости, обозначьте данную в условиях переменную (косинус угла) какой-либо буквой (например, f) и подставьте в формулу: a² = b² + c² - 2*a*b*f. Избавьтесь от степени в левой части выражения, чтобы получить в общем виде окончательную формулу вычисления длины искомой стороны: a = √(b²+c²-2*a*b*f).
3
Чтобы найти длину стороны (a), при условии, что кроме значения косинуса (f = cos(α)) лежащего напротив этой стороны угла, дана величина другого угла (β) и длина лежащей напротив нее стороны (b), можно использовать теорему синусов. Согласно ей отношение искомой длины к синусу противолежащего угла равно отношению длины известной стороны к синусу угла, который тоже дан в условиях: a/sin(a) = b/sin(β).
4
Сумма квадратов синуса и косинуса одного и того же угла равна единице - используйте это тождество, чтобы выразить синус в левой части равенства через заданный в условиях косинус: a/√(1-f²) = b/sin(β). Составьте формулу вычисления длины нужной стороны в общем виде, перенеся знаменатель дроби из левой части тождества в правую: a = √(1-f²)*b/sin(β).
5
В прямоугольном треугольнике для вычисления величин сторон достаточно дополнить косинус острого угла (f = cos(α)) одним параметром - длиной какой-либо из сторон. Чтобы найти длину катета (b), примыкающего к вершине, косинус угла которой известен, умножьте эту величину на длину гипотенузы (c): b = f*c. Если же нужно вычислить длину гипотенузы, а длина катета известна, трансформируйте эту формулу соответствующим образом: c = b/f.