Инструкция
1
Выразите синус острого угла прямоугольного треугольника через длины сторон этой фигуры. Согласно определению, синус угла (α) должен быть равен отношению длины стороны (a), лежащей напротив него - катета - к длине стороны (c), противолежащей прямому углу - гипотенузы: sin(α) = a/c.
2
Найдите аналогичную формулу для косинуса того же угла. По определению эта величина должна выражаться отношением длины стороны (b), примыкающей к этому углу (второго катета), к длине стороны (c), лежащей напротив прямого угла: cos(а) = a/c.
3
Перепишите равенство, вытекающее из теоремы Пифагора, таким образом, чтобы в нем были задействованы соотношения между катетами и гипотенузой, выведенные на двух предыдущих шагах. Для этого сначала разделите обе части исходного уравнения этой теоремы (a² + b² = c²) на квадрат гипотенузы (a²/c² + b²/c² = 1), а затем полученное равенство перепишите в таком виде: (a/c)² + (b/c)² = 1.
4
Замените в полученном выражении соотношения длин катетов и гипотенузы тригонометрическими функциями, исходя из формул первого и второго шага: sin²(а) + cos²(а) = 1. Выразите косинус из полученного равенства: cos(a) = √(1 - sin²(а)). На этом задачу можно считать решенной в общем виде.
5
Если кроме общего решения нужно получить численный результат, воспользуйтесь, например, калькулятором, встроенным в операционную систему Windows. Ссылку на его запуск найдите в подразделе «Стандартные» раздела «Все программы» главного меню ОС. Эта ссылка сформулирована лаконично - «Калькулятор». Чтобы иметь возможность вычислять с помощью этой программы тригонометрические функции включите ее «инженерный» интерфейс - нажмите комбинацию клавиш Alt + 2.
6
Введите данное в условиях значение синуса угла и кликните по кнопке интерфейса с обозначением x² - так вы возведете исходное значение в квадрат. Затем наберите на клавиатуре *-1, нажмите Enter, введите +1 и нажмите Enter еще раз - таким способом вы вычтите из единицы квадрат синуса. Щелкните по клавише со значком радикала, чтобы извлечь квадратный корень и получить окончательный результат.