Инструкция
1
Если длина ребра куба (a) известна из условий задачи, формулу расчета длины диагонали грани (l) можно вывести из теоремы Пифагора. В кубе любые два смежных ребра образуют прямой угол, поэтому треугольник, составленный из них и диагонали грани, является прямоугольным. Ребра в этом случае - катеты, а рассчитать вам нужно длину гипотенузы. Согласно упомянутой выше теореме она равна квадратному корню из суммы квадратов длин катетов, а так как в данном случае они имеют одинаковые размеры, просто умножьте длину ребра на квадратный корень из двойки: l = √(a²+a²) = √(2*a²) = a*√2.
2
Площадь квадрата тоже может быть выражена через длину диагонали, а так как каждая грань куба имеет именно такую форму, знания площади грани (s) достаточно для вычисления ее диагонали (l). Площадь каждой боковой поверхности куба равна возведенной в квадрат длине ребра, поэтому сторону квадрата грани можно выразить через нее как √s. Подставьте это значение в формулу из предыдущего шага: l = √s*√2 = √(2*s).
3
Куб составлен из шести граней одинаковой формы, поэтому, если в условиях задачи дана общая площадь поверхности (S), для вычисления диагонали грани (l) достаточно немного изменить формулу предыдущего шага. Замените в ней площадь одной грани одной шестой общей площади: l = √(2*S/6) = √(S/3).
4
Длину ребра куба можно выразить и через объем этой фигуры (V), а это позволяет формулу расчета длины диагонали грани (l) из первого шага использовать и в этом случае, внеся в нее некоторые поправки. Объем такого многогранника равен третей степени длины ребра, поэтому замените в формуле длину стороны грани кубическим корнем из объема: l = ³√V*√2.
5
Радиус описанной около куба сферы (R) связан с длиной ребра коэффициентом, равным половине корня из тройки. Выразите сторону грани через этот радиус и подставьте выражение во все ту же формулу вычисления длины диагонали грани из первого шага: l = R*2/√3*√2 = R*√8/√3.
6
Формула расчета диагонали грани (l) с использованием радиуса вписанной в куб сферы (r) будет еще проще, так как этот радиус составляет половину длины ребра: l = 2*r*√2 = r*√8.