Инструкция
1
Определите, которая из высот многоугольника должна иметь наибольшую длину. В треугольнике это отрезок, опущенный на самую короткую сторону, поэтому если в исходных условиях даны размеры всех трех сторон, то гадать не придется.
2
Если кроме длины самой короткой из сторон треугольника (a) в условиях приведена площадь (S) фигуры, формула расчета большей из высот (Hₐ) будет достаточно проста. Удвойте площадь и разделите полученное значение на длину короткой стороны - это и будет искомая высота: Hₐ = 2*S/a.
3
Не зная площади, но имея длины всех сторон треугольника (a, b и c), тоже можно найти самую длинную из его высот, однако математических операций будет значительно больше. Начните с вычисления вспомогательной величины - полупериметра (р). Для этого сложите длины всех сторон и разделите результат пополам: р = (a+b+c)/2.
4
Трижды умножьте полупериметр на разность между ним и каждой из сторон: р*(р-a)*(р-b)*(р-c). Из полученного значения извлеките квадратный корень √(р*(р-a)*(р-b)*(р-c)) и не удивляйтесь - вы использовали формулу Герона для нахождения площади треугольника. Для определения длины наибольшей высоты осталось заменить полученным выражением площадь в формуле из второго шага: Hₐ = 2*√(р*(р-a)*(р-b)*(р-c))/a.
5
Большая высота параллелограмма (Hₐ) вычисляется еще проще, если известна площадь этой фигуры (S) и длина ее короткой стороны (a). Разделите первое на второе и получите нужный результат: Hₐ = S/a.
6
Если известна величина угла (α) в какой-либо из вершин параллелограмма, а также длины сторон (a и b), образующих этот угол, найти большую из высот тоже будет не очень несложно. Для этого величину длинной стороны умножьте на синус известного угла, а результат разделите на длину короткой стороны: Hₐ = b*sin(α)/a.