Инструкция
1
Метод статистического моделирования (статистических испытаний) широко известен как метод «Монте-Карло». Этот метод является частным случаем математического моделирования и основан на создании вероятностных моделей случайных явлений. Основа любого случайного явления – случайная величина или случайный процесс. При этом случайный процесс с вероятностной точки зрения описываются как n-мерная случайная величина. Полное вероятностное описание случайной величины дает ее плотность вероятности. Знание этого закона распределения позволяет получать на ЭВМ цифровые модели случайных процессов, не проводя с ними натурных экспериментов. Все это возможно лишь в дискретном виде и в дискретном времени, что необходимо учитывать при создании статических моделей.
2
При статическом моделировании следует отойти от рассмотрения конкретной физической природы явления, сосредоточившись лишь на его вероятностных характеристиках. Это позволяет привлекать для моделирования простейшие явления, имеющие одинаковые вероятностные показатели с моделируемым явлением. Например, любые события, наступающие с вероятностью 0,5, можно моделировать простым бросанием симметричной монеты. Каждый отдельный этап статистического моделирования называют розыгрышем. Так, для определения оценки математического ожидания потребуется N розыгрышей случайной величины (СВ) X.
3
Основным инструментом моделирования на ЭВМ являются датчики случайных чисел равномерных на интервале (0, 1). Так, в среде Pascal вызов такого случайного числа осуществляется с помощью команды Random. На калькуляторах на этот случай предусмотрена кнопка RND. Существуют и таблицы таких случайных чисел (по объему до 1000000). Значение равномерной на (0, 1) СВ Z обозначается z.
4
Рассмотрите методику моделирования произвольной случайной величины с помощью нелинейного преобразования функции распределения. Этот метод не обладает методическими погрешностями. Пусть закон распределения непрерывной СВ Х задан плотностью вероятности W(x). Отсюда и начните подготовку к моделированию и его осуществление.
5
Найдите функцию распределения Х - F(x). F(x)=∫(-∞,x)W(s)ds. Возьмите Z=z и разрешите уравнение z=F(x) относительно х (это всегда возможно, так как и Z и F(x) имеют значения в пределах от нуля до единицы).Запишите решение x=F^(-1)(z). Это и есть алгоритм моделирования. F^(-1) – обратная F. Остается лишь последовательно получать по этому алгоритму значения xi цифровой модели Х* CD X.
6
Пример. СВ задана плотностью вероятности W(x)=λexp(-λx), x≥0 (экспоненциальное распределение). Найти цифровую модель.Решение.1.. F(x)=∫(0,x)λ∙exp(-λs)ds=1- exp(-λx).2. z=1- exp(-λx), x=(-1/λ)∙ln(1-z). Так как и z и 1-z имеют значения из интервала (0, 1) и они равномерны, то (1-z) можно заменить на z. 3. Процедура моделирования экспоненциальной СВ производится по формуле x=(-1/λ)∙lnz. Точнее xi=(-1/λ)ln(zi).