Инструкция
1
По виду основания пирамида может быть треугольной, четырехугольной и т.п. Треугольная пирамида называется еще и тетраэдром. В тетраэдре любая грань может быть принята за основание.
2
Пирамида бывает правильной, прямоугольной, усеченной и др. Правильной пирамида называется в том случае, если ее основанием является правильный многоугольник. Тогда центр пирамиды проецируется на центр многоугольника, а боковые ребра пирамиды равны. В такой пирамиде боковые грани являются одинаковыми равнобедренными треугольниками.
3
Прямоугольная пирамида называется тогда, когда одно из ее ребер перпендикулярно основанию. Высотой такой пирамиды является именно это ребро. В основе вычислений значений высоты прямоугольной пирамиды, длин ее боковых ребер лежит всем известная теорема Пифагора.
4
Для вычисления ребра правильной пирамиды необходимо провести ее высоту из вершины пирамиды на основание. Далее рассматривать искомое ребро как катет в прямоугольном треугольнике, также используя теорему Пифагора.
5
Боковое ребро в этом случае вычисляется по формуле b=√ h2+ (a2•sin (180°
) 2. Оно является квадратным корнем из суммы квадратов двух сторон прямоугольного треугольника. Одной стороной является высота пирамиды h, другая сторона – отрезок, соединяющий центр основания правильной пирамиды с вершиной этого основания. В этом случае а – сторона правильного многоугольника основания, n - число его сторон.
) 2. Оно является квадратным корнем из суммы квадратов двух сторон прямоугольного треугольника. Одной стороной является высота пирамиды h, другая сторона – отрезок, соединяющий центр основания правильной пирамиды с вершиной этого основания. В этом случае а – сторона правильного многоугольника основания, n - число его сторон.