Инструкция
1
2
Проставьте на чертеже условные параметры, обозначающие радиус шара (R), расстояние между секущей плоскостью и центром шара (k), радиус секущей площади (r) и искомую площадь сечения (S).
3
Определите границы расположения площади сечения как значение, находящееся в пределах от 0 до πR^2. Данный интервал обусловлен двумя логичными выводами. - Если расстояние k равняется радиусу секущей плоскости, значит, плоскость может касаться шара лишь в одной точке и S равняется 0. - Если же расстояние k равняется 0, тогда центр плоскости совпадает с центром шара, а радиус плоскости – с радиусом R. Тогда S находят по формуле для вычисления площади круга πR^2.
4
Принимая как факт, что фигурой сечения шара всегда является круг, сведите задачу к нахождению площади этого круга, а точнее к нахождению радиуса окружности сечения. Для этого представьте, что все точки на окружности - это вершины прямоугольного треугольника. В результате R – это гипотенуза, r – один из катетов. Вторым катетом становится расстояние k – перпендикулярный отрезок, который соединяет окружность сечения с центром шара.
5
Учитывая, что остальные стороны треугольника – катет k и гипотенуза R – уже заданы, воспользуйтесь теоремой Пифагора. Длина катета r равняется квадратному корню из выражения (R^2 - k^2).
6
Подставьте найденное значение r в формулу для вычисления площади круга πR^2. Таким образом, площадь сечения S определяется по формуле π(R^2 - k^2). Эта формула будет верной и для граничных точек расположения площади, когда k = R или k = 0. При подстановке этих значений площадь сечения S равняется либо 0, либо площади круга с радиусом шара R.