Инструкция
1
диагонали/em/b" class="colorbox imagefield imagefield-imagelink" rel="gallery-step-images"> Прямоугольные четырехугольники (прямоугольник, квадрат) диагональ делит на два прямоугольных треугольника, в каждом из которых она будет гипотенузой. Следовательно, для ее вычисления возможно применение теоремы Пифагора. a²=b²+c², где a - гипотенуза, b и с - катеты. Пример 1: найдите диагональ AC , если известно, что длина BC=3 см, AB=5 см.Решение: вычислите гипотенузу AC в прямоугольном треугольнике ABC. AC²=AB²+BC²; AC²=5²+3²=34; из полученного значения извлеките квадратный корень: AC=√34=5,8 см.Ответ: диагональ прямоугольника равна 5,8 см.
2
Если перед вами квадрат, то вычислить диагональ можно, зная одну из его сторон или площадь. Т.к. все стороны квадрата равны, то теорема Пифагора для него будет иметь вид: a²=b²+b², a²=2b². Площадь - произведение двух сторон (S=b²). Значит, квадрат гипотенузы (в фигуре квадрат) равен его удвоенной площади (a²=2S).Пример 2: площадь квадрата 16 см². Найдите длину диагонали. Решение: вычислите длину диагонали а через площадь. a²=2S, a²=2*16 см²=32; извлеките корень квадратный: a=√32≈5,7 см.Ответ: длина диагонали квадрата – 5,7 см.
3
В некоторых случаях для вычисления диагонали необходимо делать дополнительные построения.Пример 3: равносторонний многоугольник со стороной, равной 6 см, угол BCD прямой. Найдите длину диагонали AB.Решение: соедините точки B и D. Получился прямоугольный треугольник BCD, в котором сторона BD является гипотенузой. Вычислите гипотенузу BD: BD²=BC+CD²; BD²=6²+6²=72; Гипотенуза BD из треугольника BCD является катетом в треугольнике ABD. А диагональ AB - гипотенуза в нем. Вычислите диагональ AB: AB²=BD²+AD²=72+36=108; AB=√108=10,4 см.Ответ: длина диагонали AB=10,4 см.
4
Диагональ куба можно найти через диагональ одной из его граней.Пример 4: куб со стороной 5 см. Найдите диагональ куба.Решение: достройте и вычислите диагональ грани куба. AC²=5²+5²=50. Диагональ AC перпендикулярна ребру CB, следовательно, угол ACB – прямой. Диагональ куба AB – гипотенуза в треугольнике ACB. Найдите длину диагонали куба: AB²=AC²+CB²=50+25=75; извлеките квадратный корень. AB=√75=8,7 см.Ответ: длина диагонали куба – 8,7 см.
5
Для вычисления диагоналей параллелограмма используют теорему косинусов: c²=a²+b²-2ab*cosγ.Пример 5: a = 2 см, b = 3 см, γ = 120°. Найдите диагональ с.Решение: подставьте значения в формулу. c²= 2²+3²-2*2*3*cos120°; cos120° найдите по таблице косинусов (-0,5). с² = 4+9-12*(-0,5)=13-(-6)=19. Из этого значения извлеките корень: с = √19 = 4,35 см.Ответ: длина диагонали с = 4,35 см.